Inequalities for interval-valued Riemann diamond-alpha integrals
نویسندگان
چکیده
Abstract We propose the concept of Riemann diamond-alpha integrals for time scales interval-valued functions. first give definition and some properties interval integral that are naturally investigated as an extension nabla delta integrals. With help integral, we present variants Jensen inequalities convex concave functions on arbitrary scale. Moreover, Hölder’s Minkowski’s proved. Also, several numerical examples provided in order to illustrate our main results.
منابع مشابه
Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملDiscrete Interval–valued Choquet Integrals
For a fixed finite universe U = {u1, . . . , un}, a fuzzy subset F of U is given by its membership function F : U → [0, 1] (we will not distinguish fuzzy subsets and the corresponding membership functions notations). For several practical purposes, especially in multicriteria decision making, the expected value E(F ) of F should be introduced. The original Zadeh approach in [11] was based on a ...
متن کاملImprovements of Jensen-Type Inequalities for Diamond-α Integrals
We give further improvements of the Jensen inequality and its converse on time scales, allowing also negative weights. These results generalize the Jensen inequality and its converse for both discrete and continuous cases. Further, we investigate the exponential and logarithmic convexity of the differences between the left-hand side and the right-hand side of these inequalities and present seve...
متن کاملInterval-valued Chebyshev, Hölder and Minkowski inequalities based on g-integrals
A natural generalization of (classical) measures are monotone set valued functions, the so called non-additive measures. Further generalization of measures are intervalvalued measures and interval-valued non-additive measures. Since interval-valued ⊕-measures, as a special case of intervalvalued non-additive measures, have been extensively applied in the mathematical representation of the vario...
متن کاملDiamond-alpha Integral Inequalities on Time Scales
The theory of the calculus of variations was recently extended to the more general time scales setting, both for delta and nabla integrals. The primary purpose of this paper is to further extend the theory on time scales, by establishing some basic diamond-alpha dynamic integral inequalities. We prove generalized versions of Hölder, Cauchy-Schwarz, Minkowski, and Jensen’s inequalities. For the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2023
ISSN: ['1025-5834', '1029-242X']
DOI: https://doi.org/10.1186/s13660-023-02993-3